Dalton's Law of Partial Pressures

For a mixture of gases in a container, the total pressure exerted is the sum of the pressures that each gas would exert if it were alone. This statement, known as Dalton's law of partial pressures, can be expressed as:

$$
P_{\text {total }}=P_{1}+P_{2}+P_{3}+\cdots
$$

The symbols P_{1}, P_{2}, P_{3}, and so on represent the partial pressure of each gas (the pressure each gas would exert if it were alone in the container).

Assuming that each gas behaves ideally, the partial pressure of each gas can be determined using the ideal gas law:

$$
P_{1}=\frac{n_{1} R T}{V}, \quad P_{2}=\frac{n_{2} R T}{V}, \quad P_{3}=\frac{n_{3} R T}{V}
$$

The total pressure of the mixture can thus be represented as

$$
\begin{aligned}
P_{\text {total }} & =\frac{n_{1} R T}{V}+\frac{n_{2} R T}{V}+\frac{n_{3} R T}{V}+\cdots \\
& =\left(n_{1}+n_{2}+n_{3}+\cdots\right)\left(\frac{R T}{V}\right) \\
P_{\text {total }} & =n_{\text {total }}\left(\frac{R T}{V}\right)
\end{aligned}
$$

where $n_{\text {total }}$ is the sum of the number of moles of the various gases.

Example 1

Mixtures of helium and oxygen can be used in scuba diving tanks to help prevent "the bends." For a particular dive, 46 L He at $25^{\circ} \mathrm{C}$ and 1.0 atm and $12 \mathrm{~L} \mathrm{O}_{2}$ at $25^{\circ} \mathrm{C}$ and 1.0 atm were pumped into a tank with a volume of 5.0 L . Calculate the partial pressure of each gas and the total pressure in the tank at $25^{\circ} \mathrm{C}$.

Mole Fraction

The mole fraction is the ratio of the number of moles of a given component in a mixture to the total number of moles in the mixture. The Greek letter chi (χ) is used to represent the mole fraction.

$$
\chi_{1}=\frac{n_{1}}{n_{\text {total }}}
$$

The mole fraction can also be represented in terms of pressures:

$$
\chi_{1}=\frac{P_{1}}{P_{\text {total }}}
$$

Example 2

The partial pressure of oxygen was observed to be 156 torr in air with a total atmospheric pressure of 743 torr. Calculate the mole fraction of O_{2} present.

Example 3

The mole fraction of nitrogen in air is 0.7808 . Calculate the partial pressure of N_{2} in air when the atmospheric pressure is 760 torr.

Worksheet

1. For scuba dives below 150 feet, helium is often used to replace nitrogen in the scuba tank. If 15.2 g of $\mathrm{He}(\mathrm{g})$ and 30.6 g of $\mathrm{O}_{2}(\mathrm{~g})$ are added to a previously evacuated 5.00 L tank at $22^{\circ} \mathrm{C}$, calculate the partial pressure of each gas present as well as the total pressure in the tank.
2. A mixture of 1.00 g of $\mathrm{H}_{2}(\mathrm{~g})$ and 1.00 g of $\mathrm{He}(\mathrm{g})$ is placed in a 1.00 L container at $27^{\circ} \mathrm{C}$. Calculate the partial pressure of each gas and the total pressure.
3. At $0^{\circ} \mathrm{C}$ a 1.0 L flask contains $5.0 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{N}_{2}(\mathrm{~g}), 1.5 \times 10^{2} \mathrm{mg}$ of $\mathrm{O}_{2}(\mathrm{~g})$, and 5.0×10^{21} molecules of $\mathrm{NH}_{3}(\mathrm{~g})$. What is the partial pressure of each gas, and what is the total pressure in the flask?
4. A mixture of cyclopropane and oxygen is sometimes used as a general anesthetic. Consider a balloon with an anesthetic mixture of cyclopropane and oxygen at 170 torr and 570 torr, respectively. Calculate the mole fraction of cyclopropane in the mixture.
5. The partial pressure of $\mathrm{CH}_{4}(\mathrm{~g})$ is 0.175 atm and that of $\mathrm{O}_{2}(\mathrm{~g})$ is 0.250 atm in a mixture of the two gases.
a) What is the mole fraction of each gas in the mixture?
b) If the mixture occupies a volume of 10.5 L at $65^{\circ} \mathrm{C}$, calculate the total number of moles of gas in the mixture.
c) Calculate the number of grams of each gas in the mixture.
